THE CHINESE UNIVERSITY OF HONG KONG

DEPARTMENT OF MATHEMATICS MATH3070 (Second Term, 2016–2017) Introduction to Topology Exercise 7 Product

Remarks

Many of these exercises are adopted from the textbooks (Davis or Munkres). You are suggested to work more from the textbooks or other relevant books.

- 1. Show that the relative topology (induced topology) is "transitive" in some sense. That is for $A \subset B \subset (X, \mathfrak{T})$, the topology of A induced indirectly from B is the same as the one directly induced from X.
- 2. Let $A \subset (X,\mathfrak{T})$ be given the induced topology $\mathfrak{T}|_A$ and $B \subset A$. Guess and prove the relation between $\operatorname{Int}_A(B)$ and $\operatorname{Int}_X(B)$ which are the interior wrt to $\mathfrak{T}|_A$ and \mathfrak{T} . Do the similar thing for closures.
- 3. Let $A \subset (X, \mathfrak{T})$ be given a topology \mathfrak{T}_A . Formulate a condition for \mathfrak{T}_A being the induced topology in terms of the inclusion mapping $\iota \colon A \hookrightarrow X$.
- 4. Let $Y \subset (X, \mathfrak{T})$ be a closed set which is given the induced topology. If $A \subset Y$ is closed in $(Y, \mathfrak{T}|_Y)$, show that A is also closed in (X, \mathfrak{T}) .
- 5. Let $X \times X$ be given the product topology of (X, \mathfrak{T}) . Show that $D = \{(x, x) : x \in X\}$ as a subspace of $X \times X$ is homeomorphic to X.
- 6. Let Y be a subspace of (X,\mathfrak{T}) , i.e., with the induced topology and $f\colon X\to Z$ be continuous. Is the restriction $f|_Y\colon Y\to Z$ continuous?
- 7. Show that $(X \times Y) \times Z$ is homeomorphic to $X \times (Y \times Z)$ wrt product topologies.
- 8. Let $X_1 \times X_2$ be given the product topology. Show that the mappings $\pi_j \colon X_1 \times X_2 \to X_j$, j = 1, 2, are open and continuous.

Moreover, let \mathfrak{T}^* be a topology on $X_1 \times X_2$ such that both mappings

$$\pi_j \colon (X_1 \times X_2, \mathfrak{T}^*) \to (X_j, \mathfrak{T}_j), \quad j = 1, 2,$$

are continuous. What is the relation between \mathfrak{T}^* and the product topology?

- 9. Given any topological space Y and product space $X_1 \times X_2$, a mapping $f: Y \to X_1 \times X_2$ is continuous if and only if $\pi_j \circ f$, j = 1, 2, are continuous.
 - If \mathfrak{T}^* is a topology on $X_1 \times X_2$ with the same property, then \mathfrak{T}^* is the product topology.

10. Let (X_n, d_n) , $n \in \mathbb{N}$, be a countable family of metric spaces; $X = \prod_{n=1}^{\infty} X_n$ be the product space of the metric topologies induced by d_n . Define a metric d on X in this way, for $x = (x_n), y = (y_n) \in X$,

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{d_n(x_n, y_n)}{1 + d_n(x_n, y_n)}.$$

Show that d is a metric on X and the topology it induces is exactly the product topology.

- 11. Let [0,1] and (0,1] be intervals having the induced topology from the standard \mathbb{R} . Prove that the product spaces $[0,1]\times(0,1]$ and $(0,1]\times(0,1]$ are homeomorphic.
- 12. Let \mathbb{R} be given the standard topology; and $\mathbb{R}_{\ell\ell}$ be the one with lower-limit topology. What is the induced topology on the diagonal $\{(x,x): x \in \mathbb{R}\}$ from $\mathbb{R} \times \mathbb{R}_{\ell\ell}$?
- 13. Let $X = R^{\mathbb{N}}$ be given the product topology of standard \mathbb{R} . Denote $0 \in X$ the constant zero function and a sequence of functions $x_n \in X$ is defined by $x_n(k) = 0$ for $k \le n$ while $x_n(k) = 1$ for k > n. Show that $x_n \to 0$ in X.
- 14. Given topological spaces $(X_{\alpha}, \mathfrak{T}_{\alpha})$ and let

$$\mathcal{B}_{\mathrm{box}} = \left\{ \prod_{lpha} U_{lpha}: \ U_{lpha} \in \mathfrak{T}_{lpha} \,
ight\} \, .$$

Show that \mathcal{B}_{box} also defines a topology $\mathfrak{T}_{\text{box}}$ for $\prod_{\alpha} X_{\alpha}$. It is called the box product.